Newest technology in the SFA: the future is now

In-stent restenosis: hopes from new therapies

Yann GOUËFFIC, MD, PhD

Department of vascular surgery, University hospital of Nantes, France

l'institut du thorax

Faculty Disclosure

Pr Yann Gouëffic

I disclose the following financial relationships:

Consultant for Medtronic and Cook

Employee /

Receive grant/research support Medtronic, Cook and Bard Advisory board /

Paid speaker /

Major stockholder /

ISR and TLR rates @ 12 months are still high

	Vienna	Durability	Resilient
ISR @ 12 mo	37%	27.8%	31.7%
TLR @ 12 mo	22%	20.9%	20%

The fight against restenosis

Failure of systemic treatment

Local disease, local treatment:

-PTA

-Artherectomy

-Cutting Balloon

-Scoring Balloon

-Cryoplasty

-Brachytherapy (b,g)

-Laser

-Nitinol Stent

-Covered Stent

Drug Eluting Balloons – Drug Eluting Stents

Rationale for the development of DES

Rationale for the development of DEB derives from limitations of DES

- Stent malaposition
- Stent fracture
- Inhomogeneous drug transfer to the arterial wall
- Reendothelisation and antiplatelet treatment
- Foreign body
- Polymer

DES: Zilver ptx® trial

- l'Institut du thorax

UNIVERSITÉ DE MANTES

Modèle d'impact budgétaire (MIB) – En bref

Saving: 6,807,202 €

DEB in SFA: Proof of Concept Studies

Consistent demonstration of significant reduction of Late Lumen Loss and Restenosis Rates vs. PTA at 6month

_ l'Institut du thorax

G.Tepe et al. N Engl J Med 2008;358:689-99; M.Werk et al. Circulation. 2008;118:1358-1365; D.Scheinert TCT 2010 Oral Presentation; D.Scheinert EuroPCR 2012 Oral Presentation; M.Werk Charing Cross 2012 Oral Presentation

The NEW ENGLAND JOURNAL of MEDICINE

I'Institut du thorax

ORIGINAL ARTICLE

Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg

Gunnar Tepe, M.D., Thomas Zeller, M.D., Thomas Albrecht, M.D., Stephan Heller, M.D., Uwe Schwarzwälder, M.D., Jean-Paul Beregi, M.D., Claus D. Claussen, M.D., Anja Oldenburg, M.D., Bruno Scheller, M.D., and Ukrich Speck, Ph.D.

Stephan Heller, M.D., Uwe Schwarzwälder, M.D., Jean Paul Beregi, M.D., Claus D. Claussen, M.D., Anja Oldenburg, M.D., Bruno Scheller, M.D., and Hirich Soeck. Dir D.

Circulation

Vascular Medicine

Inhibition of Restenosis in Femoropopliteal Arteries Paclitaxel-Coated Versus Uncoated Balloon: Femoral Paclitaxel Randomized Pilot Trial

Michael Werk, MD; Soenke Langner, MD; Bianka Reinkensmeier, MS; Hans-Frank Boettcher, MD; Gunnar Tepe, MD; Ulrich Dietz, MD; Norbert Hosten, MD; Bernd Hamm, MD; Ulrich Speck, PhD; Jens Ricke, MD

Jichael Werk, MD; Soenke Langner, MD; Bianka Reinkensmeier, MS; Hans-Frank Boettcher, MD; Gunnar Tepe, MD; Ulrich Dietz, MD; Norbert Hosten, MD; Bernd Hamm, MD; Ulrich Speck, PhD; Jens Ricke, MD

	THUNDER DEB group / Control	FEMPAC DEB group / Control
First TLR @ 24 mo	15% vs 52% (p=0.001)	13% vs 50% (p=0.001)

Pacifier

Werk, Circ Cardiovasc Interv. 2012

Investigator initiated Multicenter Randomized (1:1) Primary Endpoint: 6-month LLL

Inclusion criteria SFA and popliteal arteries RC 2-3-4-5 Lesions and/or occlusions 3 – 30 cm

6-month LLL sub-group analysis:

Cumulative 12-mo clinical events

DEB for treatment of SFA in-stent retenosis

Stabile, JACC, 2012

Single center prospective cohort (39 patients)

- *LLC / CLI* = 79.5% / 20.5%
 - *Diabetics* = 48.7%

- Mean Stent length = 181.2 mm

12-month TLR = 7.8%

12-month ISR rate = 7.8%

Message to take home

- Evidence exist to prevent and to treat ISR using DES and DEB
- -Paclitaxel
- -Main limitation: PTA is the control group
- Indications should be clarify: ISR lesion, long lesion, DEB or DES...
- -Devices reimbursement

What next ? Bioresorbable scaffolds

Stanza® stent (480 Biomedical):

- -Self expandable bioresorbable stent
- It dissolves over the six- to 12-month time period
- Stance trial (SFA; efficiency @ 6 mo) (2013)

Stanza stent, 480 Biomedical)

ESPRIT® stent (Abbott)

-Drug eluting bioresorbable vascular scaffold (everolimus, poly-L-lactide polymer)(balloon-expandable device) -Esprit trial (SFA+iliac, safety and efficiency) (2015)

DEB: the value of leaving nothing behind

To avoid geographic miss

Institut du thora

DEB Area = Injured Area = working Area

- 1. Any DEB pre-treatment (predilatation) must fall within the DEB dilatation area
- 2. Any DEB post-treatment (post-dilat, spot stenting, ...) must fall within the DEB dilatation area. Should any DEB post- treatment be necessary that extends beyond the DEB area, a second DEB dilatation must be accomplished with a DEB length fully covering the post-treatment area

