What vascular access for which patient: obesity

C. Sessa, J. Coudurier

A. De Lambert, C. Ducos, M. Guergour, O. Pichot

Department of Vascular Surgery Grenoble – France

Controversies & Updates in Vascular Surgery January 17-19 2013, Paris

Obese BMI > 30 kg/m2

Overweight BMI 25.0–29.9 kg/m2

Normal weight BMI 18.5–24.9 kg/m²

Critical vein depth > 6 mm

Is the strategy of creation of AVF different in obese patients?

What are the options to increase use of autologous veins?

Role of prosthetic grafts

Kats. Kidney International 2007

Lower prevalence of AVF among obese hemodialysis patients

	AVF	Graft
N patients	183	205
Obese		
yes	54 (30%)	60 (29%)
no	129 (70%)	145 (71%)

Lower prevalence of AVF among obese hemodialysis patients

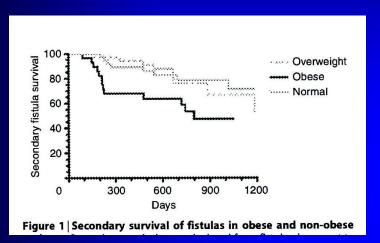
Plausible explanations:

- 1) AVF are less likely to be placed in obese patients (diameter, quality, depth....)!
- 2) AVF in obese are more likely to have primary failure!
- 3) AVF in obese may be more likely to have secondary failure!

NO evidence in the literature supporting these statements

Kats. Kidney International 2007

"Frequency of fistula placement was similar in obese and non-obese patients when vascular mapping was employed "


	Obese patients	Non-obese patients	P-value
Forearm fistula			
Artery diameter	0.26 ± 0.04	0.26 ± 0.04	0.98
Vein diameter	0.31 <u>+</u> 0.05	0.31 ± 0.04	0.83
Upper arm fistula			
Artery diameter	0.48 ± 0.08	0.49 ± 0.09	0.88
Vein diameter	0.44 ± 0.11	0.41 ± 0.09	0.24

Successful initial use and primary failure rate of new fistulas was very similar between obese and non-obese patients

	Obese	Non-obese
Total number	54	129
Successful use for dialysis (≥1 month)	29 (54%)	76 (59%)
Primary failure	25 (46%)	53 (41%)
Technical failure	5	7
Early thrombosis	14	20
Failure to mature	6	25
Steal	0	1

Kats. Kidney International 2007

Secondary failure rate of fistulas is higher among obese patients.

	Obese	Non-obese
1 years	68%	92%
2 years	58%	78%
3 years	47%	70%

Why might fistulas failure be more likely in obese patients?

- smaller vessel
- need of vein transposition
- needle infiltration during cannulation
- hypercoagulable state, myointimal hyperplasia

unlikely plausible unlikely plausible

Obesity: the only significant factor predicting secondary AVF failure

Characteristics of vein

Is in obese the vein "always" too deep for cannulation?

3.0

Inside the superficialis fascia

Before after liposuction

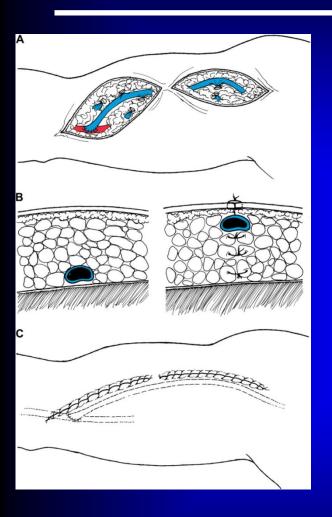
AVF location and need for superficialization

Kats. Kidney International 2007

	Obese	Non-obese
N patients	54	129
AVF location		
forearm	29 (54%)	68 (53%)
upper arm	25 (46%)	61 (47%)
Vein transposition	on	
yes	8 (15%)	14 (11%)
no	46 (85%)	115 (89%)

Options to facilitate cannulation

Second-stage intervention

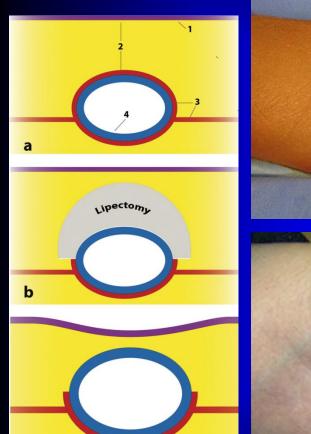

Superficialization or elevation of the vein

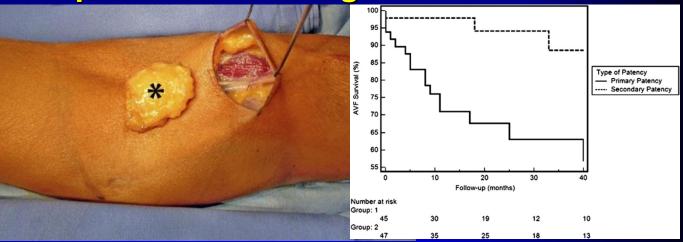
tunneled transposition elevated transposition

Removal of the excessive fat +++

lipectomy
liposuction
minimally invasive liposuction or
suction assissted lipectomy

Elevated transposition

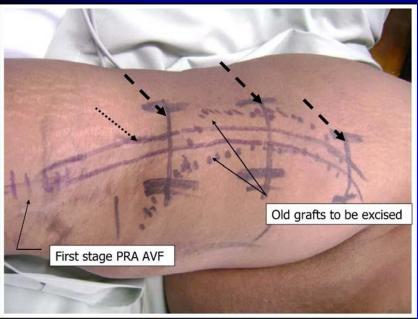

arm swelling, wound infection, hematoma, skin necrosis 10%

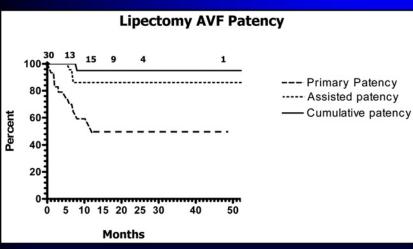

Problems with hypertrophic scars (black) and fibrotic tissues around the vein

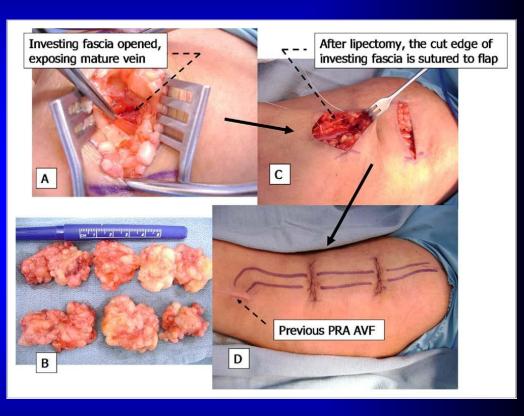
difficulties in cannulation development of stenosis

Surgical lipectomy

Bourquelot. J Vasc Surg 2009

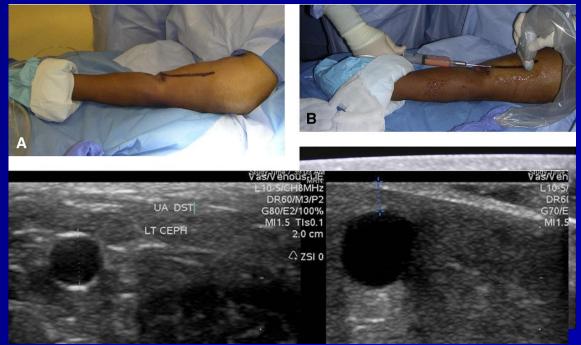






Surgical lipectomy

Barnard. Am J of Surg 2010



Minimally invasive liposuction +++

Causey. J Vasc Surg 2010

Technical description of upper extremity liposuction superficialization

- subcutaneous tumescence
- stab incision proximal to the anticubital fossa.
- 2 mm adipose suction cannula under ultrasound guidance
- suction lipectomy in a radial fashion above the fistula

Minimally invasive liposuction +++

Causey. J Vasc Surg 2010

Krochmal. Can J Plast Surg 2010

Difficult to access arteriovenous fistula secondary to adipose tissue

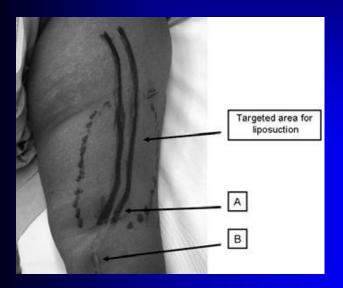
Ultrasound visualization of the arteriovenous fistula and overlying skin and adipose tissue

1 Subcutaneous turnescence using 30 mL of 1% lidocaine with 1:100,000 epinephrine

2Ultrasound guided liposuction of adipose tissue overlying arteriovenous fistula

- 1. 1 week physical exam and ultrasound
- 2. 4-6 week follow up (ensure an easily palpable fistula)
- 3. Cannulation for dialysis

Tumescence : Klein's solution : local anesthetic + adrenaline

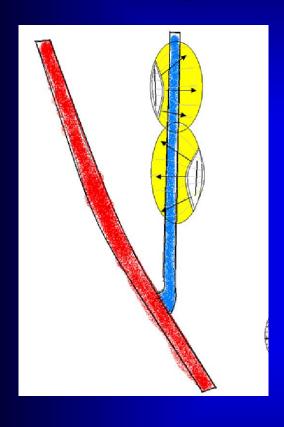

3 mm-5 mm liposuction cannulas

300-500 ml of fat removed

Intra-operative ultrasound

Liposuction with endoscopic dissection

Ochoa. J Vasc access 2010


A small transverse incision

Endoscopic dissection of the anterior wall of the AVF outflow vein using the device as a protective shield during liposuction

Surgical lipo-aspiration

Skip incisions away from the vein Lipectomy + Liposuction

Spatula
Suction cannula

Minimally invasive liposuction

Ultrasound-guided tumescence

Liposuction

Ultrasound-guided liposuction

Period: 2006-2012

21 procedures :	surgical lipo-aspiration	19
(18 patients)	minimally invasive liposuction	2

```
2 surgical lipo-aspirations
2 surgical lipo-aspirations + 1 min. invasive liposuction 1
```

16 females, 2 males

9 brachio-cephalic, 9 radio-cephalic

BMI: mean 35,85 Kg/m2 (51-20 Kg/m2)

Mean preop vein depth :10.3mm (5-25 mm)
Mean postop vein depth: 5.3mm (2-15 mm)

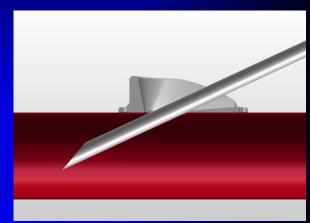
13 AVF easily cannulatable 5 AVF « difficult » to cannulate

Early complications

3 hematomas: no surgical drainage

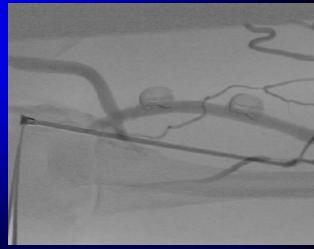
2 skin Infection: 1 surgical drainage

1 disconfort along the vein

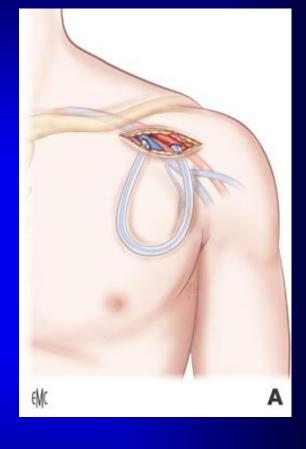

1 stenosis

No thrombosis


The Venous Window Needle Guide Vital Access Inc.



Surgically Implantable Subcutaneous Titanium Needle Guide



Role of prosthetic graft

Cryopreserved arterial homograft

Flixene graft

HeRO (Hemodialysis reliable Outflow) vascular access device

Chest wall AV graft loop

Conclusions

Strategy of creation of AVF in obese patients is similar to non-obese

Variety of options for improving cannulation

Minimally invasive liposuction under tumescence and ultrasound guidance: technique of choice

Flixene graft and cryopreserved arterial homograft are a valuable alternative

Thank you!

